THE JOURNAL OF ANTIBIOTICS

STUDIES ON INHIBITORS OF RAT MAST CELL DEGRANULATION PRODUCED BY MICROORGANISMS

II. STRUCTURE ELUCIDATION OF EUROCIDINS D AND E

KAZUYA NAKAGOMI, SHINICHI SAKAI[†], HIDEOKI TANAKA and NOBORU TOMIZUKA^{††}

Fermentation Research Institute, Agency of Industrial Science and Technology, Tsukuba, Ibaraki 305, Japan

Yoshiyuki Kawakami

Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki 300-26, Japan

TERUMI NAKAJIMA

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

(Received for publication December 5, 1989)

The planar structures of new eurocidin related compounds, eurocidins D and E, were elucidated from ${}^{1}H{}^{-1}H$ shift correlated 2D NMR spectra and other NMR data. All protons in the molecules were assigned. Eurocidins D and E have novel pentaenic structures of eurocidin family.

In the preceding paper¹), screening of microorganisms, isolation and physico-chemical properties of new eurocidin related compounds, eurocidins C, D and E have been described. These compounds were isolated from the culture broth of *Streptoverticillium eurocidicum* IFO 13491 as the potent inhibitors of mast cell degranulation induced by compound 48/80.

We report here the structure elucidation of eurocidins D and E, the major components of them, from the NMR data and other physico-chemical properties.

Fig. 1. Structures of eurocidins D and E.

Present address: [†] Takano Foods Co., Ltd., Ogawa-machi, Ibaraki 311-94, Japan. ^{††} Industrial Technology Center of Okayama Prefecture, Okayama 700, Japan.

Results and Discussions

¹³C NMR Spectra

The ¹³C NMR data of eurocidins D and E are shown in Table 1. The measurement of multiplicity was carried out with DEPT experiments (θ =45°, 90° and 135°). It was estimated from elemental analysis and the mass spectral data in the preceding paper¹) that the carbon number of eurocidins D and E is 40. The signals of 38 and 39 carbons in eurocidins D and E, respectively, were observed in their ¹³C NMR spectra because of mutual superposition in chemical shifts of conjugated double bond carbons at

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Carbon	Chemical shift (ppm), multiplicity				
Ketone 208.7 s 208.0 s COOH 176.8 s 176.8 s 176.1 177.6 Lactone 169.9 s 169.9 s 170.3 170.1 CH 133.6 d 133.6 d 133.6 d 170.3 170.1 CH 133.7 d 133.6 d 133.6 d 170.3 170.1 CH 133.7 d 133.6 d 133.6 d 170.3 170.1 CH 133.7 d 133.6 d 133.5 d 170.3 170.1 CH 133.7 d 133.6 d 170.3 170.1 170.1 CH 132.5 d 133.5 d 170.3 170.1 170.1 170.1 CH 132.5 d 133.5 d 170.3 170.1		Eurocidin D	Eurocidin E	Amphotericin A ^a	Amphotericin B	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ketone	208.7 s	208.0 s			
Lactone 169.9 s 170.3 170.1 -CH 136.6 d 136.6 d 170.3 170.1 -CH 133.7 d 133.5 d 133.5 d 133.5 d -CH 133.5 d 133.5 d 133.5 d 133.5 d -CH d d d d -CH 131.3 d 131.4 d $129 \sim 136$ -CH 130.9 d 131.1 d 129×136 -CH 129.8 d 1228.8 d 97.0 97.1 Acetal 97.0 s 97.0 97.1 97.9 97.9 97.9 CH 72.7 d 72.6 d 72.6 d 55.9 d 55.9 d 55.9 d 55.9 d 55.60 d $66 \sim 76 \text{ d}$ $66 \sim 76 \text{ d}$ $66 \times 38 \times 39 \text{ d}$ $66 \times 38 \times 39 \text{ d}$ 72.9 d </td <td>COOH</td> <td>176.8 s</td> <td>176.8 s</td> <td>176.1</td> <td>177.6</td>	COOH	176.8 s	176.8 s	176.1	177.6	
$ \begin{array}{c} -CH & 136.6 d & 136.6 d \\ = CH & 133.7 d & 133.6 d \\ = CH & 133.5 d & 133.5 d \\ = CH & d & d \\ = CH & 131.3 d & 131.4 d \\ = CH & 130.9 d & 131.1 d \\ = CH & 129.8 d & 129.8 d \\ = CH & 129.8 d & 129.8 d \\ = CH & 128.6 d & 128.5 d \\ = CH & 128.6 d & 128.5 d \\ = CH & 128.6 d & 128.5 d \\ = CH & 128.6 d & 128.5 d \\ = CH & 128.6 d & 128.5 d \\ = CH & 128.6 d & 128.5 d \\ = CH & 75.0 d & 74.9 d \\ CH & 74.2 d & 74.1 d \\ CH & 72.7 d & 72.6 d \\ CH & 70.7 d & 69.9 d \\ CH & 70.7 d & 69.9 d \\ CH & 65.6 d & 65.5 d \\ CH & 66.6 d & 56.1 d \\ CH & 38.3 d & 58.2 d \\ CH & 38.1 d & 58.2 d \\ CH & 38.5 d & 38.4 d \\ CH_2 & 44.7 t & 46.0 t \\ CH_2 & 43.5 t & 44.6 t \\ CH_2 & 36.6 t & 37.9 t \\ CH_2 & 26.3 t & 35.1 t \\ CH_2 & 25.3 t & 25.2 t \\ CH_3 & 17.9 q & 17.9 q \\ CH_3 & 17.9 q & 17.9 q \\ CH_4 & 14.4 q \\ 114.q \\ CH_4 & 114.q \\ CH_4 & 114.q \\ \end{array}$	Lactone	169.9 s	169.9 s	170.3	170.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	=CH	136.6 d	136.6 d			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	=CH	133.7 d	133.6 d J			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	=CH	133.5 d	133.5 d			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	=CH	d	d			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	=CH	132.5 d	132.5 d			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	=CH	131.3 d	131.4 d }	129~136		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	=CH	d	131.2 d			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	=CH	130.9 d	131.1 d			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	=CH	129.8 d	129.8 d			
Hemiketal97.1 s97.0 s97.097.1Acetal95.9 d95.8 d97.395.9CH75.0 d74.9 dCH74.2 d74.1 dCH72.7 d72.6 dCH70.7 d69.9 dCH70.0 d67.9 dCH66~76CH65.6 dCH65.6 dCH65.5 dCH65.6 dCH65.6 dCH65.6 dCH56.1 dCH38.3 dCH56.1 dCH38.5 dCH243.5 tCH243.5 tCH243.5 tCH235.1 tCH235.1 tCH226.3 tCH225.3 tCH225.3 tCH217.9 qCH317.9 qCH317.9 qCH314.1 q14.1 q14.1 q14.1 qCH314.1 qCH4CH4CH4CH4CH4CH4CH5CH3CH4CH4CH4CH4CH4CH4CH4CH4CH4CH4CH4CH4CH5CH5CH5CH4CH5CH5CH5CH5CH4CH5CH5CH5CH5 </td <td>=CH</td> <td>128.6 d</td> <td>128.5 d</td> <td></td> <td></td>	=CH	128.6 d	128.5 d			
Acctal 95.9 d 95.8 d 97.3 95.9 CH 75.0 d 74.9 d 74.1 d CH 74.2 d 74.1 d 72.6 d CH 72.7 d 72.6 d 74.1 d CH 70.7 d 69.9 d 66~76 CH 50.6 d 65.5 d 55~60 CH 65.5 d 65.5 d 38~39 CH 65.5 d 65.5 d 66 CH 58.3 d 58.2 d 74.1 d CH 58.3 d 58.2 d 74.1 d CH 38.5 d 38.4 d 74.1 d CH2 43.5 t 44.6 t 44.6 t CH2 43.5 t 44.6 t 40~45 CH2 35.1 t 36.6 t 35.1 t CH2 26.3 t <td< td=""><td>Hemiketal</td><td>97.1 s</td><td>97.0 s</td><td>97.0</td><td>97.1</td></td<>	Hemiketal	97.1 s	97.0 s	97.0	97.1	
CH 75.0 d 74.9 d CH 74.2 d 74.1 d CH 72.7 d 72.6 d CH 70.7 d 69.9 d CH 70.0 d 67.9 d CH 66~76 CH 65.6 d 65.7 d CH 65.5 d 65.5 d CH 65.5 d 65.5 d CH 66~76 CH 65.6 d 38~39 CH 65.5 d 65.5 d CH 65.1 d 56.1 d CH 56.1 d 56.1 d CH2 48.9 t 49.0 t CH2 43.5 t 44.6 t CH2 43.5 t 44.6 t CH2 43.5 t 38.4 d CH2 43.5 t 40~45 CH2 43.5 t 40~45 CH2 35.1 t 36.6 t CH2 25.3 t 25.2 t CH2 25.3 t	Acetal	95.9 d	95.8 d	97.3	95.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	СН	75.0 d	74.9 d			
CH 72.7 d 72.6 d CH 72.5 d CH 70.7 d 69.9 d CH 70.0 d 67.9 d CH 70.0 d 67.9 d CH 68.0 d 67.5 d CH 65.6 d 65.7 d CH 65.6 d 65.5 d CH 65.5 d 68.0 d CH 56.1 d 66.1 d CH 56.1 d 56.1 d CH 38.5 d 38.4 d CH2 48.9 t 49.0 t CH2 43.5 t 44.6 t CH2 43.5 t 44.6 t CH2 43.5 t 44.6 t CH2 35.1 t 36.6 t CH2 26.3 t 35.1 t CH2 26.3 t 35.1 t CH2 25.3 t 25.2 t CH3 17.9 q 17.9 q CH3 14.1 q 14.1 q	СН	74.2 d	74.1 d			
CH 72.5 d CH 70.7 d 69.9 d CH 70.0 d 67.9 d CH 68.0 d 67.5 d CH 65.6 d 66~76 CH 65.6 d 65.6 d CH 65.5 d 65.5 d CH 64.1 d 63.9 d CH 56.1 d 58.2 d CH 56.1 d 56.1 d CH2 48.9 t 49.0 t CH2 48.9 t 49.0 t CH2 44.7 t 46.0 t CH2 43.5 t 44.6 t CH2 43.5 t 44.6 t CH2 36.6 t 37.9 t CH2 35.1 t 36.6 t CH2 26.3 t 35.1 t CH2 26.3 t 35.1 t CH2 25.3 t 25.2 t CH3 14.1 q 14.1 q	СН	72.7 d	72.6 d			
CH 70.7 d $69.9 d$ CH 70.0 d $67.9 d$ CH $68.0 d$ $67.5 d$ CH $65.6 d$ $65.6 d$ CH $65.6 d$ $65.6 d$ CH $65.6 d$ $65.6 d$ CH $65.5 d$ $65.5 d$ CH $64.1 d$ $63.9 d$ CH $58.3 d$ $58.2 d$ CH $56.1 d$ $56.1 d$ CH $56.1 d$ $56.1 d$ CH $38.5 d$ $38.4 d$ CH2 $44.7 t$ $46.0 t$ CH2 $43.5 t$ $44.6 t$ CH2 $35.1 t$ $36.6 t$ CH2 $35.1 t$ $36.6 t$ CH2 $26.3 t$ $35.1 t$ CH2 $25.3 t$ $25.2 t$ CH3 $17.9 q$ $17.9 q$ CH3 $14.1 q$ $114 d$	СН	72.5 d				
CH 70.0 d $67.9 d$ $66 \sim 76$ CH $68.0 d$ $67.5 d$ $55 \sim 60$ CH $65.6 d$ $65.6 d$ $38 \sim 39$ CH $65.5 d$ $65.5 d$ $38 \sim 39$ CH $64.1 d$ $63.9 d$ $66 \sim 76$ CH $65.5 d$ $65.5 d$ $38 \sim 39$ CH $64.1 d$ $63.9 d$ $66 \sim 76$ CH $55.5 d$ $65.5 d$ $38 \sim 39$ CH $56.1 d$ $53.2 d$ $38 \sim 39$ CH $56.1 d$ $56.1 d$ $56.1 d$ CH $58.3 d$ $58.2 d$ $66.1 d$ CH $38.5 d$ $38.4 d$ $61.4 d$ CH ₂ $48.9 t$ $49.0 t$ $40 \sim 45$ CH ₂ $43.5 t$ $44.6 t$ $42.6 t$ CH ₂ $41.4 t$ $43.3 t$ $40 \sim 45$ CH ₂ $35.1 t$ $36.6 t$ $37.9 t$ CH ₂ $25.3 t$ $25.2 t$ $35.1 t$ CH ₂ $16.6 t$ $7.9 q$ $7.9 q$ CH ₃ $14.1 $	CH	70.7 d	69.9 d			
CH 68.0 d 67.5 d $55 \sim 60$ CH 65.6 d 65.6 d $38 \sim 39$ CH 65.5 d 65.5 d $38 \sim 39$ CH 64.1 d 63.9 d $38 \sim 39$ CH 56.1 d 56.1 d 56.1 d CH 56.1 d 56.1 d 56.1 d CH 38.5 d 38.4 d CH_2 CH_2 48.9 t 49.0 t 46.0 t CH_2 43.5 t 44.6 t $40 \sim 45$ CH_2 42.6 t 43.7 t $28 \sim 35$ CH_2 36.6 t 37.9 t $28 \sim 35$ CH_2 35.1 t 36.6 t 35.1 t CH_2 25.3 t 25.2 t 18.6 t CH_3 17.9 q 17.9 q 17.9 q CH_3 14.1 q 14.1 q 14.1 q	CH	70.0 d	67.9 d	66~76		
CH 65.6 d 65.6 d $38 \sim 39$ CH 65.5 d 65.5 d $38 \sim 39$ CH 64.1 d 63.9 d CH $61.1 d$ $63.9 d$ CH 56.1 d 56.1 d $56.1 d$ $56.1 d$ $61.1 d$ CH 56.1 d 56.1 d $56.1 d$ $56.1 d$ $78.2 d$ CH 38.5 d 38.4 d $78.2 d$ $78.2 d$ $78.2 d$ CH ₂ 48.9 t 49.0 t $46.0 t$ $78.2 d$ $78.2 d$ CH ₂ 43.5 t 44.6 t $49.0 t$ $78.2 d$ $78.2 d$ CH ₂ 42.6 t 43.7 t $40 \sim 45$ $78.2 d$ $78.2 d$ $78.2 d$ CH ₂ 41.4 t 43.3 t $40 \sim 45$ $28 \sim 35$ $28 \sim 35$ $28 \sim 35$ CH ₂ 35.1 t 36.6 t $35.1 t$ $79.4 d$ $79.9 d$ $79.9 d$ $79.9 d$ $79.9 d$ $71.9 d$ $71.9 d$ $71.9 d$ $71.9 d$ $71.9 d$ $71.9 d$ $71.4 d$	CH	68.0 d	67.5 d }	55~60		
CH $65.5 d$ $65.5 d$ CH $64.1 d$ $63.9 d$ CH $58.3 d$ $58.2 d$ CH $56.1 d$ $56.1 d$ CH $38.5 d$ $38.4 d$ CH ₂ $48.9 t$ $49.0 t$ CH ₂ $48.9 t$ $49.0 t$ CH ₂ $43.5 t$ $44.6 t$ CH ₂ $43.5 t$ $44.6 t$ CH ₂ $42.6 t$ $43.7 t$ CH ₂ $42.6 t$ $37.9 t$ CH ₂ $36.6 t$ $37.9 t$ CH ₂ $35.1 t$ $36.6 t$ CH ₂ $26.3 t$ $35.1 t$ CH ₂ $25.2 t$ $18.6 t$ CH ₃ $17.9 q$ $17.9 q$ CH ₃ $14.1 q$ $14.1 q$	СН	65.6 d	65.6 d	38~39		
CH $64.1 d$ $63.9 d$ CH $58.3 d$ $58.2 d$ CH $56.1 d$ $56.1 d$ CH $38.5 d$ $38.4 d$ CH ₂ $48.9 t$ $49.0 t$ CH ₂ $44.7 t$ $46.0 t$ CH ₂ $43.5 t$ $44.6 t$ CH ₂ $43.5 t$ $44.6 t$ CH ₂ $42.6 t$ $43.7 t$ CH ₂ $36.6 t$ $37.9 t$ CH ₂ $35.1 t$ $36.6 t$ CH ₂ $26.3 t$ $35.1 t$ CH ₂ $25.3 t$ $25.2 t$ CH ₂ $17.9 q$ $17.9 q$ CH ₃ $14.1 q$ $14.1 q$	СН	65.5 d	65.5 d			
CH $58.3 d$ $58.2 d$ CH $56.1 d$ $56.1 d$ CH $38.5 d$ $38.4 d$ CH ₂ $48.9 t$ $49.0 t$ CH ₂ $44.7 t$ $46.0 t$ CH ₂ $43.5 t$ $44.6 t$ CH ₂ $43.5 t$ $44.6 t$ CH ₂ $42.6 t$ $43.7 t$ CH ₂ $42.6 t$ $43.7 t$ CH ₂ $41.4 t$ $43.3 t$ CH ₂ $36.6 t$ $37.9 t$ CH ₂ $35.1 t$ $36.6 t$ CH ₂ $26.3 t$ $35.1 t$ CH ₂ $25.3 t$ $25.2 t$ CH ₂ $17.9 q$ $17.9 q$ CH ₃ $14.1 q$ $14.1 q$	CH	64.1 d	63.9 d			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	СН	58.3 d	58.2 d			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH	56.1 d	56.1 d			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH	38.5 d	38.4 d J			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂	48.9 t	49.0 t			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂	44.7 t	46.0 t			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂	43.5 t	44.6 t			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH ₂	42.6 t	43.7 t			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂	41.4 t	43.3 t	40~45		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂	36.6 t	37.9 t	28~35		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂	35.1 t	36.6 t			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH ₂	26.3 t	35.1 t			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂	25.3 t	25.2 t			
CH ₃ 17.9 q 17.9 q CH ₃ 14.1 q 14.1 q CH ₄ 114 q 114 q	CH ₂		18.6 t			
$\begin{array}{c} CH_{3} \\ CH_{4} \\ CH_{4} \\ 114 \alpha \\ 114 $	CH ₂	17.9 a	17.9 a			
$CH_{-} \qquad 114a \qquad 114a$	CH ₂	14.1 a	14.1 a			
	CH,	11.4 a	11.4 a			

Table 1. ¹³C NMR data of eurocidins D and E and their comparison with those of amphotericins A and B.

^a In literature³⁾.

128 ~ 137 ppm region. The numbers of multiplicity of carbons were >C<; 4, $-C_1^{LH}$; 24, $>CH_2$; 9 and CH_3 ; 3 for eurocidin D and >C<; 4, $-C_1^{LH}$; 23, $>CH_2$; 10 and CH_3 ; 3 for eurocidin E, respectively. Consequently, it was found that one of methylenes of eurocidin E changed to a methine of eurocidin D, probably by the substitution of a hydrogen atom with a hydroxyl group.

HORII *et al.*²⁾ reported that the partial structure of eurocidin A, which is purified from Eurocidin-T produced by *Streptomyces albireticuli*, contained 40 carbon atoms, pentaenic double bonds, a 30membered lactone ring, a secondary butyl side chain, a carboxyl group, a mycosamine moiety and some hydroxyl groups. The structures of eurocidins D and E were similar to that of eurocidin A, with regard to the total carbon number and two of four singlet carbon signals (¹³C NMR data). The two singlet carbon signals among four ones were defined as a lactone carbon and a carboxyl one. The comparison of the ¹³C and ¹H NMR data of eurocidins D and E (Tables 1 and 2) with those of amphotericins A and B^{3,4)}, heptaene macrolide antibiotics, suggests that the remaining two singlet carbon signals correspond to those of a ketone and a hemiketal.

¹H NMR and ¹H-COSY Spectra

The assignment of the protons of eurocidins D and E molecules is shown in Table 2. The values of the multiplicity were obtained by reffering to ¹H J resolved 2D NMR spectra, when clear multiplicity was observed, such as 32-CH₃, 33-CH₃ and 6'-CH₃ *etc.* The ¹H-¹H connectivity map (¹H-COSY) for eurocidin E is shown in Fig. 2, marked with the connectivities for the regions of C-6 to C-10 and C-28 to C-33. Without references to further structural information the coupling sequences for the following parts of the molecule were able to be correctly interpreted: C-2 to C-4, C-6 to C-10, C-12 to C-18, C-29 to C-33 and mycosamine moiety. The cross peaks and chemical shifts of the regions of C-12 to C-18 and the mycosamine (C-1' to C-6') almost agreed with the data of amphotericins A and B³. Therefore it was estimated that the region of C-11 to C-18 contained a hemiketal (C-11) and C-14 (with a carboxyl group) had the same partial structure as amphotericins A and B, as well as mycosamine binding site at C-17.

Some polyenes such as nystatin A_1 , pimaricin, tetrins A and $B^{5 \sim 7}$, as well as amphotericins A and B had the same partial structure as the region of C-11 to C-18 of eurocidin E. The common structures of such polyenes are suggested to be a mycosamine moiety, a hemiketal and a carboxyl group. The ¹H-COSY spectra of the region of C-2 to C-10 revealed that the cross peak connectivities were separated into two parts of the regions of C-2 to C-4 and C-6 to C-10. C-3 is considered to be a ketone carbon reffered to both chemical shifts of 2-H and 4-H protons and ¹³C NMR data. Although it is possible that the carbons of C-2 to C-10 are sequenced in the reverse direction, the chemical shifts of 2-H (2.78 ppm) and 10-H protons (1.48 ppm) suggests that C-2 and C-10 are adjacent to the lactone and hemiketal carbons, respectively.

The comparison between eurocidins D and E in their ¹H-COSY spectra revealed that the cross assignments are identical with each other except for the region of C-6 to C-10. It is considered that one methylene-proton among C-6 to C-10 in eurocidin E had changes to a hydroxyl group in eurocidin D. ¹H NMR partial spectra $(1.2 \sim 3.0 \text{ ppm})$ of eurocidins D and E are shown in Fig. 3. A doublet signal of two 8-H protons at 1.13 ppm in eurocidin E disappeared, and a doublet 8-H proton signal appeared at 2.98 ppm in eurocidin D (Fig. 3B and Table 2). The chemical shifts of methylene protons of 6-H, 7-H and 10-H of eurocidin D were not equivalent, and a 9-H proton signal was changed from broad singlet at 3.90 ppm in eurocidin E to a doublet at 3.80 ppm in eurocidin D. Therefore, the structure of eurocidin D

VOL. XLIII NO. 5

Proton ^b	Chemical shift (ppm), multiplicity $(J(Hz))^a$				
	Eurocidin D	Eurocidin E	Amphotericin A ^c	Amphotericin B	
2-H	2.26	2.28 m	2.27	2.12	
2-H	2.47	2.45 m	2.34		
3-H	4.17	4.16 m	4.03	4.07	
4-H	2.26	2.28 m			
4-H	2.47	2.45 m			
6-H ₂		1.60			
6-H	2.39				
6-H	2.57				
7-H	1.28	2.26			
7-H	1.66	2.42			
8-H ₂		1.13 d (5.4)	1.50		
8-H	2.98 d (11.7)	. ,			
9-H	3.80 d (11.6)	3.90 br s	4.22	4.22	
10-H ₂		1.48 d (15.0)	1.60		
10-H	1.38 d (16.6)				
10-H	1.79				
12-H	1.10	1.10	1.13	1.10	
12-H	1.82	1.81	1.88	1.80	
13-H	3.99 m	3.98 m	3.95	3.96	
14-H	1.87	1.87 dd (10.4, 10.3)	1.88	1.86	
15-H	4.17	4.16 m	3.95	4.17	
16-H	1.51	1.53	1.75	1.47	
16-H	2.12	2.14	1.77	2.18	
17-H	4.38 br s	4.39 br s	4.34	4.28	
18-H	5.89 dd (15.6, 8.5)	5.87 dd (15.1, 8.4)	5.75	5.94	
19-H~26-H	6.00~6.40	6.00~6.40			
27-H	5.61 m	5.60 m	5.69		
28-H	2.22	2.20 m			
	2.32	2.34			
29-H	4.79 dd (10.7, 4.1)	4.80 dd (10.2, 3.0)			
30-H	1.54	1.57 m			
31-H	1.10	1.10			
	1.35 ddd (13.2, 7.9,	1.35 ddd (11.2, 7.7,			
	5.2)	4.8)			
32-CH ₃	0.85 t (7.3)	0.84 t (7.4)			
33-CH ₃	0.86 d (6.8)	0.85 d (6.8)			
Mycosamine		• •			
1'-H	4.47 s	4.51 s	4.47	4.46	
2'-H	3.70 d (1.5)	3.72 d (2.8)	3.70	3.79	
3'-H	2.74 d (8.8)	2.77 d (7.5)	2.68	2.96	
4'-H	3.12	3.14	3.07	3.18	
5'-H	3.20 m	3.23 m	3.14	3.24	
6'-CH-	1 17 d (6.0)	1.17 d (6.1)	1.13	1.15	

Table 2. ¹H NMR data of eurocidins D and E and their comparison with amphotericins A and B.

^a When clear multiplets were observed, they are indicated here.

^b Two numbers at one carbon indicate that the two hydrogens on the same carbon are not equivalent.

° In literature³⁾.

is proposed that which a hydroxyl group of 8-position is substituted for a 8-H proton of eurocidin E as shown in Fig. 1.

Both eurocidins D and E are proposed to have novel pentaenic structures revealed at the first time among eurocidin family, and eurocidin D is proposed as a novel substance. On the other hand it was not found that eurocidin E was different from eurocidin A, a component of Eurocidin-T, from several

Fig. 2. Contour plot of a 2D correlated ¹H NMR spectrum and ¹H-¹H correlation map of eurocidin E (C-6 to C-10 and C-29 to C-33 regions).

HPLC analyses in the preceding paper¹⁾ and some structural data²⁾, but the producing microorganisms of these two compounds and their productive patterns of eurocidin family were different from each other. Eurocidin E may be an isomer of eurocidin A such as a position isomer of hydroxyl groups or a stereoisomer. Whether eurocidin E is identical to eurocidin A remains still unknown until elucidating the structure and the properties of purified eurocidin A from Eurocidin-T.

The configuration of asymmetric carbon atoms of eurocidins D and E is still unknown. The biological effects of eurocidins C, D and E on rat peritoneal mast cells compared with other polyenes, as well as their anti-microbial activities will be reported elsewhere⁸⁾.

Experimental

Chemicals

Reference substance was a gift from Takeda Chemical Industries Ltd., Japan, designated as Eurocidin-T in this paper. DMSO- d_6 (99.95% purity) was purchased from E. Merck, Darmstadt, FRG.

THE JOURNAL OF ANTIBIOTICS

NMR Spectrometry

NMR spectra were obtained on a Jeol JNM GX-400 spectrometer operating at 400 MHz with ¹H NMR and ¹H-¹H shift correlated 2D NMR (¹H-COSY). ¹³C NMR, DEPT experiments (θ =45°, 90° and 135°) and ¹H J resolved 2D NMR were recorded with Jeol JNM GX-270 spectrometer operating at 270 MHz. The amounts of sample used were about 10 mg in 1.0 ml of DMSO-d₆ for ¹H experiments and about 25 mg in 0.7 ml of DMSO-d₆ for ¹³C experiments. Chemical shifts were given in ppm using DMSO-d₆ as the internal standard.

¹H-COSY spectra were measured by the use of a 2D correlation sequence with a 90° mixing pulse. Data processing was carried out with the standard Jeol soft ware. An f2 spectral width of 2,500 Hz over 1,024 data points gave a digital resolution of 4.88 Hz. A total of 512 spectra, each of 32 transients, gave, with appropriate incrementing of the evolution delay, an f1 width of 2,500 Hz and a digital resolution of 4.9 Hz (with zero filling). The ¹H J resolved 2D spectra were obtained with the usual pulse sequence. The spectral widths were 1,170.1 Hz in f2 and 50.0 Hz in f1, giving a digital resolution of 1.14 and 0.1 Hz, respectively, and the data points were 2,048 × 512 matrix each of 64 transients.

Acknowledgments

The authors deeply thank Dr. TOSHIFUMI AKIZAWA, Cancer Institute, Japanese Foundation for Cancer Research, for his kind advice of this structure elucidation.

References

1) NAKAGOMI, K.; M. TAKEUCHI, H. TANAKA, N. TOMIZUKA & T. NAKAJIMA: Studies on inhibitors of rat mast cell

degranulation produced by microorganisms. I. Screening of microorganisms, and isolation and physico-chemical properties of eurocidins C, D and E. J. Antibiotics $43: 462 \sim 469$, 1990

- 2) HORII, S.; T. SHIMA & A. OUCHIDA: Partial structure of the eurocidin complex. J. Antibiotics 23: 102 ~ 104, 1970
- SOWIŇSKI, P.; J. K. PAWLAK, E. BOROWSKI & T. IWASHITA: The structure of amphotericin A. II. The complete structure of the antibiotic. J. Antibiotics 38: 175~180, 1985
- AszaLos, A.; A. BAX, N. BURLINSON, P. ROLLER & C. MCNEAL: Physico-chemical and microbiological comparison of nystatin, amphotericin A and amphotericin B, and structure of amphotericin A. J. Antibiotics 38: 1699~1713, 1985
- CHONG, C. N. & R. W. RICKARDS: Macrolide antibiotic studies. XVI. The structure of nystatin. Tetrahedron Lett. 1970: 5145~5148, 1970
- CHONG, C. N. & R. W. RICKARDS: Macrolide antibiotic studies. XVII. Cyclic hemiketal structures in nystatin, amphotericin B, pimaricin and lucensomycin. Tetrahedron Lett. 1972: 5053~5056, 1972
- 7) PANDEY, R. C. & K. L. RINEHART, Jr.: Polyene antibiotics. VII. Carbon-13 nuclear magnetic resonance evidence for cyclic hemiketals in the polyene antibiotics amphotericin B, nystatin A₁, tetrin A, tetrin B, lucensomycin, and pimaricin. J. Antibiotics 29: 1035~1042, 1976
- NAKAGOMI, K.; K. MASUDA, H. TANAKA, N. TOMIZUKA, Y. MITSUI & T. NAKAJIMA: Studies on inhibitors of rat mast cell degranulation produced by microorganisms. III. Biological and anti-microbial activities of eurocidins C, D and E. J. Antibiotics, in preparation